skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luo, Zhixiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Protein translation is tightly and precisely controlled by multiple mechanisms including upstream open reading frames (uORFs), but the origins of uORFs and their role in maize are largely unexplored. In this study, an active transposition event was identified during the propagation of maize inbred line B73. The transposon, which was named BTA for ‘B73 active transposable element hAT’, creates a novel dosage-dependent hypomorphic allele of the hexose transporter gene ZmSWEET4c through insertion within the coding sequence in the first exon, and results in reduced kernel size. The BTA insertion does not affect transcript abundance but reduces protein abundance of ZmSWEET4c, probably through the introduction of a uORF. Furthermore, the introduction of BTA sequence in the exon of other genes can regulate translation efficiency without affecting their mRNA levels. A transposon capture assay revealed 79 novel insertions for BTA and BTA-like elements. These insertion sites have typical euchromatin features, including low levels of DNA methylation and high levels of H3K27ac. A putative autonomous element that mobilizes BTA and BTA-like elements was identified. Together, our results suggest a transposon-based origin of uORFs and document a new role for transposable elements to influence protein abundance and phenotypic diversity by affecting the translation rate. 
    more » « less